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ABSTRACT 

Current sheets necessarily form at the interface between adjacent twisted flux tubes and so are ubiquitous 

to magnetic configurations having non-trivial field topology. In an earlier publication (P. M. Bellan, Phys. 

Rev. Letters, 83,4768, 1999) the author showed that current sheets in a low p plasma will be kinetically 

unstable with respect to Alfv& wave emission if the current sheet becomes sufficiently thin for the field- 

aligned electron flow to become super-Alfvenic. At first sight it might appear that before the current sheet 

becomes thin enough to develop a super-Alfvenic flow, ion acoustic instabilities will develop when the sheet 

becomes thin enough for the electron flow to exceed the ion acoustic velocity. However, it is shown here 

that because of strong ion Landau damping on ion acoustic waves for plasmas with comparable electron and 

ion temperatures, ion acoustic waves have a much higher instability threshold than the Alfvkn instability. 
Thus, Alfvkn instability should dominate ion acoustic instability in thin current sheets. @ 2001 COSPAR. 

Published by Elsevier Science Ltd. All rights reserved. 

Introduction 
When two adjacent magnetic flux tubes are twisted, a magnetic rotational discontinuity develops at the 

interface between the two flux tubes and an associated current sheet is formed (Parker,1983). The rotational 

discontinuity is parameterized by A, the angle of rotation of the magnetic field across the interface (current 
sheet), and a, the width of the current sheet. The consequences of having such a current sheet in low p 

plasma were recently considered [Bellan (1999)] using a Vlasov model and it was found that if the current 
sheet is sufficiently thin, the field-aligned electron flow becomes super-Alfvenic and the system becomes 

kinetically unstable with respect to Alfven wave emission (the possibility of current-driven kinetic AlfvCn 

wave instabilities had been examined much earlier for the case of uniform plasmas [Meyerhofer and Perkins, 

1984; Cayton, 19851). 
Because the Alfvenic electron Aow is confined to the current sheet, the unstable region is confined to 

the current sheet and so can be viewed as a thin, unstable gain medium embedded in a stable exterior 

region. The emitted Alfvkn waves are inertial Alfvbn waves (IAW) if ,f3, = 2~ontcTe/B2 < m,/mi and are 
kinetic Alfvkn waves (KAW) if p, > m,/mi. The emitted waves propagate obliquely out into the exterior 
region where they are Landau damped. Thus, wave energy created in the current sheet is dissipated in the 
region exterior to the current sheet. This exterior region damping acts as an effective load on the unstable 

current sheet and so raises the threshold for instability to be somewhat higher than for a spatially uniform 

super-Alfvenic electron beam in a spatially uniform background plasma. 
The purpose of this paper is to investigate the relationship between Alfvenic and acoustic instabilities in 

the regime where w << wb. This is the regime where the magnetohydrodynamic approximation is typically 
used and so the model presented here provides a kinetic description of situations more commonly described 

by MHD. Our analysis shows that for plasmas with comparable electron and ion temperatures, the ion 
acoustic wave has a much higher threshold for instability than the Alfven wave. Thus, the analysis confirms 
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the picture presented in Bellan (1999) that two colliding twisted flux tubes will spontaneously emit Alfven 
waves from their interface when the current sheet at the interface becomes sufficiently thin. 

Current. Sheet and Alfvenic Electron Flow 
Two slowly colliding flux tubes have a current sheet with width a which decreases in time. It seems 

possible that an ion acoustic kinetic instability might occur before the electrons have attained Alfvenic 

velocities because acoustic waves are known to become unstable when the electron flow exceeds the ion 
acoustic velocity c, = dm. Before proceeding with the wave analysis, we discuss the equilibrium and 
give the condition for super-Alfvenic field-aligned electron flow (Bellan, 1999). 

Because /3 << 1, the equilibrium is assumed to be given by J x B =0 or equivalently 

V x B =a(r)B 

where 

B(x) =?jBsin[B(z)]+iBcos[Q(~)]. 

Here 19(x) = ~~Q(z’)&’ g ives the rotation of B relative to its orientation at 
corresponds to having cr given by 

where 0 is the Heaviside function. The corresponding field angle dependence is 

for 1x1 5 a/2 

for (~1 2 a/2 . 

(1) 

(2) 
0. The current sheet 

(3) 

(4) 

For simplicity, finite Larmor radius effects are neglected by assuming that particles are cold in the direction 

perpendicular to B. Since the field-aligned current magnitude is J(x) = cy(~)B/p,, the equilibrium electron 
flow velocity is 

4xP u~/eo(x) = K = 

where VA is the Alfvt?n velocity and terms of order m,/mi have been dropped. Thus if aw&c < A, the 
field-aligned electron flow becomes super-Alfvenic and destabilization of AlfvCn waves becomes a possibility. 

Mode Identification 
We review the dispersion relations of Alfvkn waves and ion acoustic waves: In ideal MHD, the AlfvCn 

wave has the dispersion 

w2 = j&2 
II A (6) 

and there is no parallel electric field. However, when the non-MHD effects of electron inertia and finite 
parallel electron pressure are taken into account, this dispersion becomes modified to have a dependence 
on kl and there is a finite parallel electric field (Stasiewicz et al., 2000). In the IAW regime the Alfvkn 
wave dispersion becomes w 2 = k2u2 /(l + kfc2/w&) while in the KAW regime the dispersion becomes II A 
w2 = kivi(l + ktpz) where P: = cz/&. 

Electrostatic waves in the w << w,i regime have the dispersion (Stix, 1992) 

. 
(7) 

If kl = 0, Eq.(7) reverts to the unmagnetized acoustic dispersion w2 = kicz/(l + kiA&) but when kl # 0 

the more complicated dispersion given by Eq.(7) results in ion acoustic waves confined within a conical 
envelope having cone angle N w/w,-i as observed experimentally by Bellan (1976). 
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Derivation of Wave Equation 
We will now reconcile Eqs.(G) and (7) by deriving a wave equation containing both acoustic and Alfvenic 

physics and then compare the acoustic and AlfvCn beam-driven instabilities that would be excited by fast- 

moving field-aligned electrons in a low p current sheet. Reconciliation of Eqs(6) and (7) requires retaining 

displacement current terms normally dropped from low frequency analyses because the displacement current 
in Ampere’s law is equivalent to the left hand side of Poisson’s equation, i.e., 

V. poJ+poso~ - V x B 
> 

=O+g V.E-i c n,q, = 0. 
0=i,e 

Thus, retaining displacement current in Ampere’s law corresponds to retaining V E in Poisson’s equation 

and to retaining the terms Ict + I# in Eq.(7). 

The derivation of the non-uniform plasma Alfven wave equation given in Bellan (1999) will now be repeated 

using the full Ampere’s law. We assume that perturbed quantities vary as g(x) exp(ikll (Z)S - iwt) where 

w << we, kll = Ic,cos~, and s is the distance along B. The parallel wave current is given by 

(9) 

where Z is the plasma dispersion function and UT0 = de. 

Analysis of perpendicular particle dynamics shows that both electrons and ions have identical BxB 

drifts which therefore do not result in any perpendicular current. The lowest order perpendicular current 

thus comes from polarization drift, and since this is proportional to ion mass, the ion polarization drift 

&X31 = (m~/~#)a%/at is the dominant contributor to perpendicular current. Thus, the perpendicular 

wave current is 

(10) 

The Alfven wave polarization is such that the vector potential is A=AIIB and so the perpendicular 

component of Ampere’s law becomes 

[v (v. (A,,&))], = poi1 + $fg 
or 

VJ. (ik,,A,,) = i + $ fg. ( 1 
Since the vector potential was assumed to have no perpendicular component, El 
can be integrated to give 

1 l- 
+,, = w 3 + 7 4. ( 1 
Thus, the parallel electric field is 

and the perpendicular electric field is 

(11) 

(12) 

-V,$. and so Eq.(12) 

(13) 

(14) 

ig_ = -VI (2 (++;)lA,,). (15) 



732 P. M. Bellan 

The parallel component of Ampere’s law gives 

-%A,, = POJII - TE,, 
and so substitution of Eq.(9) gives 

and then substitution of Eq.( 14) gives the wave equation 

(C2+V~)V:A,, = [k:4-W2 (1+2)] [1- .& 2&, z’(w/;,;+~~c)] A,,. 

(16) 

(17) 

(18) 

Comparison of Eq.(18) with Eq.(8) of Bellan (1999) shows that retention of the perpendicular displacement 
current introduces terms of order vi/c” while retention of the parallel displacement current introduces the 

‘1’ term in the second square bracket factor. 
In both the ion acoustic and KAW regimes the parallel wave phase velocity lies in the range VTi << 

w/lcll << VT, so that after using the appropriate asymptotic forms of Z’, the wave equation becomes 

(2 + vi) v:Fi,, = [k$+w2 (1+%)] x 

{1+ * [l-!g+i,:, (i,exp(-Et) + +w-<?I)]} 4 

where 

(19) 

(20) 

Correspondence of Wave Equation to Familiar Limits 
The general nature of Eq.(19) will now be established by showing that it corresponds to several familiar 

limiting cases: 

If the plasma is uniform and VI = 0 (no wave dependence on coordinates transverse to the magnetic 
field), then the acoustic and Alfven waves decouple and Eq.(19) g’ Ives the two dispersion relations 

w2 = Ic+J;/ (1 + VQC”) and w2 = /$cz/ (1 + /c~X$~). If th e imaginary terms (Landau terms) are 

included, then the usual ion acoustic instability is recovered, i.e., if ~11,~ > c, and T, >> T, then ion 
acoustic waves are destabilized. 

In the limit of zero plasma density, l/X&, --f 0 and vi/c” -+ 03 so that Eq.(19) reverts to VIA,, = 

(‘c; - +) A,, 7 i.e., to an electromagnetic wave in vacuum. 

If the plasma is uniform and an exp(ik1.x) dependence is assumed, then using pz = c2X&/v~, Eq.(19) 
becomes the dispersion relation 

1 

(1 + vi/c”) I[ 1 + k2X2 II De - F + id2 (&exp(-,$,2) + $& exp(-Z:,)] (21) 

This can be solved graphically by plotting klpz versus k@i/w2 and using cf = p,vi/Z; the case for 

/?, = 0.1 is plotted in Figure 1. 
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Figure 1. Plot of Ictpz versus I$v~/w~ for ,B, = 0.1; the downward sloping curve on the left 
is the kinetic AlfvQn wave while the upward sloping curve on the right is the acoustic wave. 

For clarity, the imaginary terms have been omitted in Figure 1. This figure shows that for a given 
k =Icll& + kl, the acoustic and Alfven waves are well separated in frequency and so Eq.(21) can be solved 
approximately by assuming either w2 N kfcz or else w2 N kiwi (note that the frequency of the Alfven wave 

exceeds by a factor /3~‘/~ the frequency o f an acoustic wave having the same k =Ic,,d: + ki). Hence, if we 

assume w2 N k2c2 Eq.(21) becomes II s’ 

k;p; + k:Az,, + 1 + kiXLe 
k2c2 

- -J$ + idI (E, exp(-,$,2) + $& exp(-<f )) = 0; (22) 

which is just Eq.(7) with Landau damping/instability added. It should be noted that the k:XL, term 
resulted from retaining vi/c’ in Eq.(21). 

On the other hand if we assume that w2 N kivi, then Eq.(21) becomes 

k:p; - - 
k;:; - (I+ &c2) I[ I+ k2X2 + id’2 

II De (F. exp(-$3 + $5 exd-Ei))] = 0 (23) 

which is just the KAW dispersion 

w2 = kiv;(l + klp;) 

generalized to include Landau damping/instability and terms of order vi/c” and kiXL,. 

Comparison of growth rates of KAW and ion acoustic instabilities 

(24 

The dispersion relations above can be cast in the form E~(w, + iwi) + ici(w, + iwz) = 0 so that 
w, = --pi/ (&,(wT)/aw,) . F rom Eq.(22) the real part of the acoustic frequency is 

wr = kllcs 
1 + k;p: + k2X2,, 

and so the acoustic growth rate is 

w, = - 
kIIcsn1’2 (& exp(-1:) + $6 exd-Ef)) 

2 (1 + k;p; + k2Xf,,)3’2 
(26) 

or, using Eq.(20), 
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W, = - (~)“2(~)“2k,,cs x 

( 1 - T I J 
1 + k:p; + ICY& 

+ (2)3’2 (:Y2exp [-cl + $$:k2i$J]) 

(1 + #+I,2 + h-2x2,J2 

I 

(27) 

which is just the finite IcTpz generalization of Eq. (9.7.3) of Krall and Trivelpiece (1972). 
Similarly, the KAW growth rate may be written as 

w, = -+I;&; 
7r112 (i,exp(-Ea) + $5 exp(-(5) 

2 
2&J 

or, using Eqs.(20), (24), and w,” = kiwi(l + I&$), 

(28) 

Wt = _ (z&y2 (?y2k:p; 
l- wAd~~kTp2 + (g)3’2 (?Z)1’2exp [-” +zpf)2]) 

2 
+‘A. (29) 

Comparison of Eqs.( 27) and (29) shows that while the Alfven and ion acoustic growth rates are formally 
similar, the Alfvkn growth rate has a lower threshold because the Alfven wave has negligible ion Landau 
damping due to the 0,’ factor in the argument of the exponential in Eq.(29). 

A quantitative comparison can be made by considering a hydrogen plasma with T,/Ti = 1. Since the 
current sheet acts as a lossy gain region that is coupled to the exterior region (much like a laser cavity 
coupled via partially reflecting mirrors to the outside world), the lowest order kl mode in the current sheet 
will be approximately a half-wavelength, i.e., kla - T; for example, see Fig. 1 of Bellan (1999). At marginal 
instability of Alfven waves, a z Ac/wP, and so the perpendicular wavelength will be ki - T/a N rtipi/Ac 

giving 

(30) 

Thus, the example used in Bellan (1999) where p, = 0.1 and A = 0.87~ corresponds to having kipf N 0.1 in 

the current sheet. Figure 2 plots wi/kl,wA versus 2Li/,c/VA for acoustic and KAW waves for these parameters 
and shows that the Alfven wave has a much lower instability threshold than the ion acoustic wave. 
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Figure 2. Comparison of acoustic and kinetic Alfven wave growth rates wi/k)lvA versus 

I+c/?IA for a hydrogen plasma with ,0, = 0.1, T,/Ti = 1, kqpz = 0.1, k2X& << 1. Upper 
curve is the Alfven growth rate while lower curve is the ion acoustic growth rate. The 
Alfven wave has a lower threshold for instability. 
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IAW regime 
In the IAW regime p < m,/mi and the Alfvkn wave parallel phase velocity is faster than the electron 

thermal velocity, i.e., w/Q >> 21~~. However, the acoustic wave parallel phase velocity will be slower than 

the electron thermal velocity (because of lower frequency). Thus, the acoustic dispersion relation is still 

given by Eq. (22) and still has growth rate given by Eq.(27). Th e situation for the IAW dispersion is more 

complicated. Inside the current sheet <, is less than unity because Z+O M w/+ whereas outside the current 

sheet 5, is much larger than unity because w/lcll >> ?&. Thus, because of the fast electron beam inside the 

current sheet the IAW actually behaves like the KAW, whereas outside the current sheet the IAW behaves 

in the normal fashion. Thus, the instability threshold for the IAW will again be lower than for the acoustic 

wave, but the IAW growth will be smaller than a KAW having the same A because the kf_pz factor in 

Eq. (29) is smaller for an IAW. 

Summary 
Current, sheets arise when two distinct field topologies collide or when magnetic flux tubes become braided. 

The current, sheet forms because of the rotational discontinuity of the magnetic field at the interface between 

two adjacent, distinct magnetic structures. Current sheets in low p plasmas will have mainly field-aligned 

currents and hence field-aligned electron flow. As a current sheet becomes narrower, the field-aligned electron 

flow is squeezed into a smaller channel so that the velocity of the flow increases. If the electron flow velocity 

becomes super-Alfvenic, Alfvkn waves become destabilized via inverse Landau damping. 
One might expect that ion acoustic waves would also be destabilized by this fast electron flow and would 

have a lower threshold for instability than Alfvkn waves because the sound velocity c, is much smaller than 

the Alfvkn velocity VA. However, this does not happen because ion Landau damping is much stronger for 
acoustic waves than for Alfvkn waves and so inhibits acoustic instability but not Alfvkn instability. Thus, the 

acoustic instability threshold is much higher than the Alfvkn threshold for situations with comparable ion 
and electron temperatures. Thin current sheets will consequently emit Alfvkn waves, but not ion acoustic 

waves; the emitted Alfv6n waves will transport magnetic twist away from the current sheet and so alter the 
magnetic topology. 
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APPENDIX 

This appendix is in response to a referee’s question regarding how the ion acoustic mode discussed in this 
paper relates to the “slow ion acoustic” (SIA) mode discussed by Seyler and Wahlund (1996) and Seyler, 

Clark, Bonnell and Wahlund (1998). 
TO show this relationship we derive the 2-fluid dispersion relation from the linearized continuity equation 

and warm-plasma equation of motion, 

-iwfi, + ik.&n, = 0 (31) 

-iwm,& = q,, 
( 

-ik$+&,xB 
> 

- iky?nT,, 
n 

where u denotes species, y = 1 for isothermal phenomena, and y = 3 for adiabatic phenomena. Solution of 

Eq. (32) gives the velocity 

(33) 
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which can be combined with Eq.(31) to obtain 

(34) 

Substituting Eq.(34) into Poisson’s equation gives the 2-fluid, warm magnetized plasma dispersion relation 

k2 = 

The wave frequency is assumed small compared to the ion cyclotron frequency, i.e. w << wci, for the 
present discussion. 

Conventional Ion Acoustic Mode 
Ions: We assume cold ions so that w/k, >> dm and klrL% << 1 (where 7’~~ = d-/w,, is the 

ion Larmor radius); thus thermal terms in the ion term of Eq.(35) can be dropped. 
Electrons: The electrons are warm so that w/k, << d- m, and the ‘1’ can be dropped from the 

electron term which becomes Boltzmann-like (also 7e = 1). 
Using these assumptions, Eq.(35) reduces to 

w;% - -+ 
De 

(36) 

which becomes Eq.(7) in the w << w,, limit. 

Slow Ion Acoustic Mode 
Ions: It is assumed that kz can be dropped from the ion term in Eq.(35), i.e., kz/w2 << ki/ )w2 - ~21. 

Electrons: It is assumed that kz/w2 >> ki/ lw2 -w&I. 

Using these two assumptions, Eq.(35) reduces to 

k2 = 2 

w2 _ w;t _ ,;fi 

m 

u2_,pYe”Te Wpe 

me > 

(37) 

which, except for the added y’s, is identical to Eq. (7) of Seyler and Wahlund (1996). 
Assuming quasineutrality amounts to dropping the k2 on the LHS. Balancing the RHS terms gives the 

dispersion 

W~i + k~ 
-Y& + re~Te 

w2 = m, 

l+ZY 9 

1. 
(38) 

Seyler et al. define the SIA as the mode corresponding to the limit m,k:/m,kZ >> 1, so that Eq.(38) 
becomes 

W 
- 

WC, 
(39) 
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where pz = (Y~KT~ + Y~KT,) /miwzi. Seyler et al(1998) plot the SIA mode for k,m~‘2/k~m:‘2 = 0.1 in their 
Fig. 1. We note that Eq.(39) can also be written as 

k2v2 
w2 = k$$& (I+ kfd) (40) 

and so simply corresponds to the finite klp, extension of the electrostatic limit of the inertial AlfvQn wave 

[dispersion w2 = k$&‘(l + k:c2/w&)]. 

Kinetic Analysis of SIA mode 

It is important to check that this 2-fluid SIA mode is consistent with the more accurate model provided 

by the magnetized plasma kinetic electrostatic dispersion relation, 

l-rlc ~ $ ,$” Lz (k%) [l + ~ooZ(ano)] = 0 

where CY, = (w - rwCC) 121~~ and ‘UT0 = dm. Equation (39) implies 

(41) 

W2 Y&G + Y$Te 
Q’ m, 

>vTe >>vT; (42) 

showing that the large argument limit should be used for evaluating both Z(ane) and Z(cr,i) in Eq.(41). 
Thus the 2-fluid SIA dispersion corresponds to assuming W/k,vTe >> 1, W/k,VTi >> 1, ki& << 1, and 

w/W,, << 1. Because vTe >> VT,, finite k,vT,/w terms should be kept as a higher order correction for the 

electrons, but k,VT,/W terms are entirely negligible for ions and may be dropped. 
Since ion and electron responses differ, it is useful to define a generic susceptibility 

) [I + aoaZ(aoo)] + 2 1, (k:r;,) [2 + (you (Z(~nc) + Z(a-nc))] (43) 
n=l 

Using the large argument expansion for the plasma dispersion function 

z(0) = -$ 1 + & + --& + . . . +i&2exp(--a2) 
[ 1 

and ignoring Landau damping terms, it is seen that 

1+ aZ(o) = -& 
[ 
1+ & + . . . 1 

(44 

and 

2 + (Z(crna) 

xi = -2 (~ I, (kqrZi) w2n2~w2 ) 

DZ n=l cl 
(47) 

Invoking the klrie << 1 assumption, retaining finite k,vTe/w, and using v&/2X& = ri,w&/X$, = w& 

the electron susceptibility becomes 

Xe = & De (-3 (If%) - kf’20w2”2a) 

k2w2 
= _z 

k2w2 
1+3k2X2 Wt _ !fi 

2 
wPe 

z De 
W2 k2 w2 - W& 

(48) 
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If one considers the w << tici, k:rii << 1 expansion of the n = 1 term of the ion susceptibility one 
obtains 

1 k2 r2 

= ,@,& (1 +Lk$;i ) (50) 

where the middle line corresponds to the w << w,, limit of the ion term in Eq.37. Thus, the a-fluid SIA 

mode corresponds to the k2 r2 I Lz << 1, w/w,i << 1 limit of the n = 1 ion term. Curiously, the last two lines 

of Eq.(50) and hence the 2-fluid expression, Eq.(39) turn out to be valid even in the limit kfr& >> 1. This 

limit corresponds to a Boltzmann-like ion response as noted by Seyler and Wahlund (1996). 

To prove that the last two lines of Eq.(50) are in fact valid for all values of kTr’&, consider the identity 

1 = c 1n (z) eP = la(z)e-” + 2 5 1, (zr) e-” (51) 
n=-CXZ 7l=l 

so that in the w << w, limit, xi becomes 

1 

k2X2 DZ 
[ 
1 - Io(klr&)e-k:‘~~] 

We note that the form 1 - Io(k:&)e -k?T~~ conventionally occurs as the finite Larmor radius correction 

to low frequency perpendicular motion and, for example, has been discussed by Lysak and Lotko (1996) in 
conjunction with Alfven waves. 

Now, one might naively expect that the fluid approximation as given in the last line of Eq.(50) would be 

invalid for large k:& because (i) Eq.(50) comes from just the n = 1 term in the infinite sum, (ii) Eq.(50) 

was derived on the assumption that kt& << 1, and (iii) the last line of Eq.(50) looks quite different 
from the last line of Eq.(52), the kinetic expression which includes all cyclotron harmonics. However, direct 
numerical evaluation shows that the two functions z/( 1 + z) and 1 - la(z)e-’ are the same within 7% over 
the entire range 0 < 5 < co. It is interesting that approximating 1 - lo(z)e-” ‘v z/(1 + z) is, in general, 
far more accurate than the commonly used Taylor expansion 1 - 1u(z)eP2 M 2 - 3x2/4 which is valid only 
for zr << 1 and even in that range is only a trifle better representation than the z/(1 + zz) representation. 
Thus, the last line of Eq.(50) is an excellent approximation to the kinetic limit for all k:&. 

The kinetic dispersion can therefore be written as 

k2w2 
k2 = - $ (1 - Io(k~&)epk?‘%) + 7 

Dl 

Using 1 - la(z)e-” N z/(1 + x) this can be expressed as 

2 2 
LIJ = Wpe 

(53) 

(54) 
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Assuming kf/kf >> 1, kfr& << w&/wzi, and kqr$ CC milm, this reduces to 

w2 = 
k2v2 

k&i& 
1 + 3kzA&% (1 + k:r’&) . (55) 

By assumption, the term 3kfX&,w&/w” is small, and so we solve Eq.(55) iteratively. When the first 

approximation w2 = w&kzvi (1 + kt&) /kzc2 is substituted into Eq.(55), we obtain 

where 

(57) 

This shows that the correct choices of the y’s for the fluid equations are yi = 1 and 7e = 3. The dispersion 
is consistent with w << w,i provided (1 + kfpz) k~mi/k~rn, << 1. Thus, Eq.(56) agrees with the 2-fluid 
mode, and again is simply a warm plasma extension of the electrostatic limit of the inertial Alfven wave. 

Equation (56) is valid for klr’& << w$/wzi which corresponds to klX&, << 1. 
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